Information-Stress Principle in Cantonese

LAU, Chaak Ming
The University of Hong Kong /
Kyushu University

Background

- ▶ It is known that
 - Cantonese syllables are perceptually isochronal
- ▶ However
 - Some syllables are indeed far shorter than others

Problem

- Question
 - What?
 - How much?
 - Why?
- **▶** Solution
 - Information-stress Principle (Duanmu 2007)

Outline

- Cantonese stress
 - Shorter syllables
 - Quantity Sensitivity (Lai 2002)
- Methodology
 - Cantonese speech → duration measurement
- ▶ Results
- ► Information Stress Principle (Duanmu 2007)
 - Info ↑ stress ↑

Cantonese Stress

- Lack of clear word stress
 - No 'light words' (cf. Mandarin, Taiwanese, etc.)
- Perceptual Isochrony
 - Every syllable sounds equally long

Syllables with shorter duration

- Shortened syllables
 - 阿 (aa3, hypocoristic marker)
 - 唔 (m4, negative morpheme)
- ► ½ of normal syllables

Lai (2002)

- Classifiers are also shorter
 - Explained by an iamb
- Mono-moraic syllables
 - Aspect markers
 - ▶e.g. 咗 zo2
 - Classifiers
 - ▶e.g. 個 go3 (my example) 個 電話 響<u>緊</u> cl./phone/ring-PROG

Some questions

▶ 1. Underlyingly monomoraic?

▶ 2. Are they equally short?

Methodology

- ► Idea
 - Measure the duration of syllables
 - ▶ If 'isochronal', syllables should have similar lengths

- My focus
 - Durations in a 4-syllable sequence (Verb, Particle, Classifier, Noun)
 - [VP 睇咗 [NP 本書]] (tai2zo2 bun2syu1)
 read-PER CL-book
 read a book

Methodology

- ▶ 13 subjects were recruited
- Subjects were
 - given a script (with 8 dialogues)
 - Instructed to read it out as if it is a real conversation
- Recorded Sounds
 - contained 13 VPs with the above structure
 - Only the VPs were analysed

Data Analysis

- Data discarded
 - VPs with long pauses / laughs between syllables
 - VPs in which any syllables were skipped
- Data obtained
 - 147 VPs from 13 subjects
- Segmentation
 - Manually separated into syllables by Praat

Data Sample

Results

- Average
 - V+PRT (296ms)NP (518ms)
 - V (177ms) P (119ms)
 - CL (179ms)N (339ms)
- Paired t-tests
 - V+PRT vs. NP t(145) = -21.514, p < 0.0001
 - Verb vs. Particle t(145) = 14.3166, p < 0.0001
 - Classifier vs. Noun t(145) = 18.3805, p < 0.0001
 - Classifier vs. Verb t(145) = -0.4318, p = 0.66670
 - ▶ Verbs are not significant shorter than classifiers

Conclusions

- ► Long last syllables (Noun)
 - Phrase-final lengthening?
- ▶ Verb > Particle
- ► Noun > Classifier
- ►NP > VP
- ▶ Classifiers ~ Verb

Moraic Account?

- Verbs have similar lengths with Classifiers
 - Both are underlyingly bimoraic
- Possibility
 - Higher level stress?
 - ► E.g. phrasal stress?

Phrasal Stress

- Phrasal stress assignment
 - NPs are stressed
- English
 - JOHN loves MARY
 - Subjects and objects receive phrasal stress
- Cantonese
 - Object NPs are longer than the verb (shown above)

Information-stress Principle

- The Information-Stress Principle (Dunamu 2007:144)
 - A word or phrase that carries more information than its neighbour(s) should be stressed.
- Information load (Shannon 1948, in Duanmu's wordings)
 - The more predictable a form is, the less information it carries.

Information-stress Principle

- ▶ In the phrase [X YP]
 - X, the head is more predictable than YP
 - → YP has a higher Information Load
 - → YP should receive stress

Proposal

- Length is the best phonetic correlate of Cantonese stress
- Lengthening of NPs may be due to their high 'information load'. (ISP)
- Most underlying forms are bimoraic
 - Reduced syllables: lack stress -> shorter

To be done

- Measure
 - Nouns and verbs at different lengths
 - Syllable structure of classifiers
 - ▶ Difference between CV classifiers and CVC classifiers

Future Research

- Monosyllabic noun lengthening
 - Lengthening effect due to minimal word requirement
- Linguistic truncation
 - Monosyllabic tendency in verb truncation (Luke and Lau 2008)
 - Due to its unstressed position?
- Corpus check

Selected Reference

- Bauer, R. S. and Benedict, P. K. (1997) Modern Cantonese Phonology. Berlin; New York: Mouton de Gruyter.
- Cheung, K-H. (1986). The Phonology of Present-Day Cantonese. University College London. PhD thesis.
- Duanmu, San (1993). Rime length, stress and association domains. Journal of East Asian Linguistics. 2, 1-44.
- Duanmu, San. (2007). The *Phonology of Standard Chinese (2nd Edition)*. Oxford University Press.
- Lai, Esther Yuk Wah. (2002). *Prosody and Prosodic Transfer in Foreign Language Acquisition: Cantonese and Japanese.* Lincom Europa.
- Luke, Kang-kwong, & Lau, Chaak-ming. (2008). On Loanword Truncation in Cantonese. *Journal of East Asian Linguistics*, 17, 347-362.
- Shannon, C. E. (1948). A Mathematical Theory of Communication. *Bell System Technical Journal.* **27**, 379–423, 623–656.